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ABSTRACT

A set of linear and nonlinear stability anal-
ysis tools have been developed to analyze
steady state incompressible flows in 3D
geometries. The algorithms have been
implemented to be scalable to hundreds of
parallel processors. The linear stability of
steady state flows are determined by calcu-
lating the rightmost eigenvalues of the
associated generalize eigenvalue problem.
Nonlinear stability is studied by bifurca-
tion analysis techniques. The boundaries
between desirable and undesirable operat-
ing conditions are determined for buoyant
flow in the rotating disk CVD reactor.

INTRODUCTION

With modern algorithms and parallel com-
puters, incompressible flow models on
complex three-dimensional (3D) geome-
tries can be solved quickly and reliably.
When a fully-coupled Newton method is
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used [1], coupled with a scalable iterative
linear solver, it is possible to directly cal-
culate steady-state solutions. We have pre-
viously used such algorithms to study the
chemical vapor deposition of Gallium Ars-
enide, where parameters studies consisting
of dozens of steady-state calculations were
used to suggest design modifications [2-5].

Steady-state algorithms, as opposed to
transient algorithms, converge indiscrimi-
nately to stable and unstable solutions. One
way to determine the linear stability of a
steady state solution is to linearize the
problem about the solution and then solve
the associated generalized eigenvalue
problem. If all the eigenvalues have nega-
tive real part, than small disturbances
decay in time; however, any eigenvalues
with positive real parts imply that the solu-
tion is unstable because any disturbances
aligned with the associated eigenvectors
will grow. The Cayley transformation, cou-
pled with a robust eigen-solver, can be
used to identify several rightmost eigenval-
ues. This methodology has been used suc-
cessfully by a few groups [6-9].

The linear stability analysis can only deter-
mine local stability; complementary non-
linear analysis techniques can be used to
probe the global behavior. Bifurcation
analysis techniques such as continuation
methods [10] can locate such phenomena
as turning points and regions of parameter
space that exhibit multiple steady state
solutions [11].

In this paper, we demonstrate how aug-
menting a robust steady-state flow code
with a set of stability analysis algorithms
can yield a powerful tool for analyzing
engineering flow problems. In addition, we
show that careful implementation of these
tools can lead to algorithms that scale to
hundreds of parallel processors and models
consisting of millions of unknowns.
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NUMERICAL METHODS: Eigensolver

The algorithms and parallel implementa-
tion of the linear stability analysis algo-
rithms has been detailed in a previous
report [8]. After a steady-state solution to
the incompressible Navier-Stokes equa-
tions are calculated, the evolution equa-
tions are linearized about the steady state.
The associated generalized eigenvalue
problem has the form

, (1)

where  is the Jacobian matrix,  is the

mass matrix, is an eigenvector, and its
associated eigenvector. A Cayley transfor-
mation, which includes two adjustable real
parameters,  and , is used to reformu-
late the generalized eigenvalue problem
into an ordinary eigenvalue problem for the
transformed eigenvalues :

. (2)

A simple relationship exists between the
transformed and original eigenvalues,

. (3)

Appropriate choices of  and  are made

so that the eigenvalues of interest (those
with largest real part) are mapped to the
eigenvalues of largest magnitude in the
Cayley system.

The eigenvalue problem defined in equa-
tion (2) is solved using Arnoldi’s method
using a version of the P_ARPACK soft-
ware [12,13] modified to perform the Cay-
ley transformation. With proper choices of

and , we found that an Arnoldi spaces

of size  was typically sufficient for cal-
culating eigenvalues to three digits of accu-
racy. The main hurdle for a scalable
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algorithm is the solution of the linear set of
equations (2) to sufficient accurcay with an
parallel iterative matrix solver. Details can
be found in a previous paper [8].

NUMERICAL METHODS: Bifurca-
tion Analysis Algorithms

The nonlinear analysis algorithms are used
to detect and delineate regions of multiple
steady states. The two algorithms used in
this work are a pseudo arc-length continua-
tion algorithm and a turning point (a.k.a.
saddle point) bifurcation tracking algo-
rithm. Each of the algorithms was imple-
mented using bordering algorithms, which
require minimal intrusiveness to the code
that was already set up to do a fully cou-
pled Newton method. Routines where writ-
ten that have just three main calls to the
MPSalsa finite element code: (1) Calculate
a residual vector given a solution vector
and a parameter value; (2)
Calculate a Jacobian matrix given a solu-
tion vector and a parameter value; and (3)
Solve a linear system given a Jacobian
matrix and right hand side. Since the linear
systems all involve the same Jacobian
matrix as solved by the steady-state code,
these algorithms do not require modifica-
tion of the matrix fill routine, sparse matrix
allocation, or parallel communication
maps.

The pseudo arc-length continuation algo-
rithm [10] allows steady-state solution
branches to be tracked around turning
points, by basing the continuation algo-
rithm on a monotonic arc-length variable

in place of the system parameter . This
requires a modification to the Newton
algorithm. The usual Newton iteration for
reaching a steady-state solution vector is
to solve

s

p
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  with Newton iteration

, (4)

where is the residual equations from the

PDE discretization,  is the Jacobian

matrix, and  is the update to the latest
estimate of the solution vector. For arc-
length continuation, an additional con-
straint equation , which ensures that the

next solution is a distance  from the pre-
vious solution, is solved simultaneously
with the steady-state equations. Newton’s
method on this augmented nonlinear sys-
tem is used to solve for unknowns  and

, and has the form,

  with Newton iteration

. (5)

A bordering algorithm is used to manipu-
late the Newton iteration so that it requires
two linear solves of the matrix  in place
of one solve of the augmented matrix in eq.
(5). This does not save CPU times but
leads to much easier implementation
within a code that is already set up for
solving sets of linear equations coming
from the Jacobian matrix.

Solution branches can pass through turning
points. These bifurcations signify the cre-
ation or destruction of two steady state
solution branches and can delineate
regions of multiplicity. In our example
problem in the next section, the turning
point is also the global stability limit for
the desirable flow pattern. At a turning
point one eigenvalue of the matrix is iden-
tically zero, and we use this fact to directly
calculate the bifurcation. For small systems
of equations, this can be specified with a
single additional constraint equation, that
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the determinant of the Jacobian matrix is
zero. However this is not a feasible calcu-
lation for large systems of equations. We
use the fact that there exists a null vector
(the eigenvector associated with the zero
eigenvalue) of unit length in the null space
of . This leads to a system of system of

 equations and unknowns ( , ,

and ), where  is the length of  (and

the order of ),

  with Newton iteration

. (6)

The third equation, , is used to set

the length of , which is otherwise arbi-

trary up to a constant. The form of , often
chosen to be the vector of all 1’s, can be
chosen by the user.

Another bordering algorithm is used to
solve the Newton step by requiring only
linear solves with the matrix . This
requires four linear solves per Newton step
of the augmented. The fact that it is the
same matrix each time can be used to save
on operations by reusing the precondi-
tioner.

RESULTS

The impact of combining a robust steady-
state flow code with linear and nonlinear
stability analysis tools is demonstrated on
an industrially relevant problem: flow in
the rotating disk CVD reactor. This reactor
configuration as shown in Figure 1 is com-
monly used to grow semiconductors such
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as gallium arsenide and gallium nitride.

Under ideal circumstances, the flow pat-
terns approach those of the von Karman
similarity solution [14]. This leads to very
uniform film growth rates across the sus-
ceptor which in turn can lead to high qual-
ity films. However, it has been shown
experimentally and numerically that unde-
sirable flow patterns can occur [15-17] due
to the destabilizing buoyancy force of the
fluid being heated from below.

Our model involves the incompressible
Navier-Stokes equations, the continuity
equation, and a heat balance. In this paper
we use the Boussinesq approximation for
modelling buoyancy and fix all physical
properties constant. Although the tempera-
ture differences in this reactor generally
warrant temperature dependent properties
and in particular an idea gas treatment of
density variation with temperature, the

FIGURE 1. Geometry and sample mesh for
the axisymmetric model of the rotating disk
reactor.
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simpler model improves the chances of
discovering simple scaling laws in the
results. In this work, the Prandlt number
and the reactor aspect ratio were fixed at
unity. The inlet plug flow velocity is fixed
at the matching conditions, which is the
rate at which an infinite disk would pump
in the flow [15]. The other parameters that
are varied in this study are the rotational
Reynolds number and the Rayleigh num-
ber, defined as:

  and . (7)

In these definitions,  in the disk rotation

rate,  is the disk radius,  is the kine-

matic viscosity,  is the gravity mag-
nitude times the thermal expansion
coefficient times the temperature differ-
ence over the reactor, and is the thermal
diffusivity. In the Rayleigh number there
are three length scales in the numerator: in
our definition, these are chosen to be the

momentum boundary layer thickness, .

Using an axisymmetric model, we tracked
the steady state solutions and located
regions where multiple steady states coex-
ist. Figure 2 clearly . shows this region in a
plot of the Nusselt number (a measure of
heat flux) at the center of the rotating disk
as a function of the Rayleigh number (a
measure of the buoyancy force). Solution
branches labeled A, B, and C exist at the
exact same conditions. It was determined
through linear stability analysis that solu-
tion branch B is unstable, while A and C
are stable. By visualizing the solutions it is
evident that solutions on branch A exhibit
desirable flow pattern similar to the von
Karman similarity solution, while solu-
tions on branch C exhibit a buoyancy-
induced torroidal recirculation cell.
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FIGURE 2. Locus of steady state solutions as measured by the Nusselt number at the
center of the disk, as a function of the Rayleigh number. The rotational rate is Re=83.4
and the inlet flow rate is at matching conditions. A region of multiplicity is evident.

FIGURE 3. Locus of turning points marking the left end of branch C in Figure 2, as a
function of the rotational Reynolds number. Designing a reactor to operate below this
curve will avoid the chance of seeing the undesirable recirculations of branch C.

FIGURE 3. Locus of turning points marking the left end of branch C in Figure 2, as a
function of the rotational Reynolds number. Designing a reactor to operate below this
curve will avoid the chance of seeing the undesirable recirculations of branch C.

While operating on branch A is possible
for , it is also possible that the reac-
tor would get attracted to branch C. The
behavior is dependent on the initial config-
uration of the reactor, the procedure bring-
ing the reactor to the final conditions, and
upon random disturbances. However, if the

Ra 7>
reactor is designed and operated at
where branch C no longer exists, and if our
assumption is true that no other solution
branches exist at these parameter values,
than the reactor must operate at the desir-
able conditions associated with branch A.

Ra 7<
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It is therefore necessary only to know the
location of the left end of branch C to tell
designers how to avoid the reactor operat-
ing with these undesirable recirculations.
This point is a turning point, and can be
converged to with the robustness of New-
ton’s method using the algorithms
described above. We have calculated this
turning point and then tracked it as a func-
tion of the rotational Reynolds number of
the reactor, as presented in Figure 3. For
the range of Reynolds numbers studied, it
appears that a safe reactor design would
satisfy the criterion,

(8)

The turning point ends near ,
below which there is continuous transition
from the desirable to the undesirable flow
patterns. Future results will study how this
scaling law persists to higher Reynolds
numbers and for different reactor aspect
ratios.

In addition to knowing the limit of the glo-
bal stability of the solution branch A, it is
also important to know the limits of its
local stability. In order to scale-up the reac-
tor to larger deposition surfaces, it might
not be feasible to keep within the criterion
defined by eq. (8). Also, through careful
procedures or sophisticated controls, it
might be possible to avoid other stable
solution branches.

The determination of local stability limit of
this branch should include non-axisymmet-
ric disturbances, so we have studied a full
three-dimensional model. The geometry is
exactly the same as the axisymmetric
model above, but now consists of 500,000
total unknowns and uses an unstructured
finite element mesh. This problem was run
on 256 processors of the Sandia/Intel Tflop
computer, each of which is a 333 MHz
Pentium Chip. A single eigenvalue calcula-

Ra Re 65<

Re 48=

tion required about 20 minutes to calculate
the several largest eigenvalues to sufficient
accuracy. A continuation run along solu-
tion branch A of Figure 2 was performed,
and at each step the rightmost eigenvalues
were computed using the algorithms
described above. The first two complex
pairs of eigenvalues to cross into the posi-
tive real plane are plotted as a function of
Rayleigh number in Figure 4.

It can be seen that this solution branch
loses linear stability to a Hopf bifurcation
near  and is quickly followed
by a second Hopf bifurcation near

. This instability represents a
hard upper limit for operating this reactor
under desirable flow situations, for all
other parameters being fixed. Visualization

FIGURE 4. Plot of the four largest
eigenvalues in the complex plane as a
function of the Rayleigh number, along
solution branch A in Figure 2, using a 3D
model of 500,000 unknowns, The region of
linear stability of this branch ends in a
Hopf bifurcation near .Ra 18.5=

Ra=12

Ra=19

Ra=12

Ra=19

Ra 18.5=

Ra 19.0=
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of the eigenvectors associated with the
destabilizing bifurcations revealed that the
first bifurcation is an axisymmetric bifur-
cation. This can be efficiently detected
with the axisymmetric model. The second
Hopf bifurcation is a mode-1 instability.
and this is quickly followed by a third to a
mode-2 instability. The proximity of three
Hopf bifurcations suggest a region of very
complicated dynamics. A mesh conver-
gence study with up to four million
unknowns, presented in [7], confirms these
results.

CONCLUSIONS

Linear stability and bifurcation analysis
routines have been linked to a steady-state,
finite element, parallel, incompressible
flow code. The power of these tools is
demonstrated on a significant engineering
design problem: avoiding recirculating
flows in the rotating disk chemical vapor
deposition reactor. A region of solution
multiplicity is determined using arc-length
continuation. For a region of two-parame-
ter design space, a simple design rule for
avoiding the possibility of simple torroidal
recirculations is proposed, based on the
direct calculation of the turning point
where this undesirable flow pattern origi-
nates. Using a scalable eigenvalue calcula-
tion routine applied to a 3D flow model,
the value of one key design parameter is
determined which corresponds to the loss
of the local stability of the desirable flow
branch.

REFERENCES

1. J.N. Shadid, R.S. Tuminaro and H.F.
Walker, “An Inexact Newton Method
for Fully Coupled Solution of the
Navier-Stokes Equations with Heat and
Mass Transport,” JCP, 137 (1997) 155-
185;

2. J. N. Shadid, H. K. Moffat, S. A. Hutch-
inson, G. L. Hennigan, K. D. Devine,
and A. G. Salinger, “MPSalsa: a finite
element computer program for reacting
flow problems part 1 - theoretical devel-
opment,” Sandia National Laboratories
Technical Report, SAND95–2752
(1996).

3. A.G. Salinger, K.D. Devine, G.L. Hen-
nigan, H.K. Moffat, S.A. Hutchinson,
and J.N. Shadid, MPSalsa: a finite ele-
ment computer program for reacting
flow problems part 2 - user’s guide,”
Sandia National Laboratories Technical
Report, SAND96-2331 (1996).

4. S. A. Hutchinson, J. N. Shadid and R. S.
Tuminaro, “Aztec User’s Guide: Version
1.0,” Sandia National Laboratories
Technical Report, SAND95–1559
(1995).

5. A.G. Salinger, J.N. Shadid, S.A. Hutch-
inson, G.L. Hennigan, K.D. Devine,
H.K. Moffat, “Analysis of gallium ars-
enide deposition in a horizontal CVD
reactor using massively parallel compu-
tations,” J. Crystal Growth 203 (1999)
516-533.

6. K. A. Cliffe, T. J. Garratt and A.
Spence, “Eigenvalues of the discretized
Navier-Stokes equation with application
to the detection of Hopf bifurcations,”
Advances in Computational Mathemat-
ics, 1 (1993) 337-356.

7. R.B. Lehoucq and A.G. Salinger, “Mas-
sively parallel linear stability analysis
with P_ARPACK for 3D fluid flow
modeled with MPSalsa,” Applied Paral-
lel Computing, PARA’98, B. Agstrom,
Dongarra, J., Elmroth, E. and Was-
niewski, J., Editors, Lecture Notes in
Computer Science, No. 1541, Springer-
Verlag (1998) 286-295.

8. R.B. Lehoucq and A.G. Salinger,
“Large-scale eigenvalue calculations for



Stability Analysis of Large-Scale Incompressible Flow Calculations on Massively Parallel Computers 8

stability analysis of steady flows on
massively parallel computers,” submit-
ted to Int’l J. Numerical Methods in
Fluids, (1999).

9. M. Morzynski, K. Afanasiev, and F.
Thiele, “Solution of the eigenvalue
problem resulting from global non-par-
allel flow stability analysis,” Computer
Methods in Applied Mechanics and
Engineering, 169 (1999) 161-176.

10.H.B. Keller, in Applications of Bifurca-
tion Theory, P.H. Rabinowitz editor,
Academic, New York, (1997), 359.

11. A.G. Salinger, S. Brandon, R. Aris, and
J.J. Derby, “Buoyancy driven flows of a
radiatively participating fluid in a verti-
cal cylinder heated from below,” Proc.
Royal Soc. A, 442 (1993) 313-341.

12. R. B. Lehoucq, D. C. Sorensen and C.
Yang, ARPACK USERS GUIDE: Solu-
tion of Large Scale Eigenvalue Prob-
lems with Implicitly Restarted Arnoldi
Methods, SIAM press (1998), Philadel-
phia, PA.

13.K. J. Maschhoff and D. C. Sorensen,
“P_ARPACK: An Efficient Portable
Large Scale Eigenvalue Package for
Distributed Memory Parallel Architec-
tures,” in Applied Parallel Computing in
Industrial Problems and Optimization,
Jerzy Wasniewski and Jack Dongarra
and Kaj Madsen and Dorte Olesen Edi-
tors, Lecture Notes in Computer Sci-
ence, Volume 1184, Springer-Verlag
(1996) Berlin.

14.G. Evans and R. Greif, “Forced flow
near a heated rotating disk: a similarity
solution,” Numer. Heat Transfer, 14,
(1988) 373-387.

15.W. G. Breiland and G. H. Evans,
“Design and Verification of Nearly Ideal
Flow and Heat Transfer in a Rotating
Disk Chemical Vapor Deposition Reac-

tor,” J. Electrochem Soc, 138(6), (1991)
1806-1816.

16.G. Evans and R. Greif, “A numerical
model of the flow and heat transfer in a
rotating disk chemical vapor deposition
reactor,” J. Heat Transfer, 109, (1987)
928-935.

17. D.I. Fotiadis, S. Kieda and K.F. Jensen,
“Transport phenomena in vertical reac-
tors for metalorganic vapor phase epit-
axy,” J. Crystal Growth 102 (1990) 441-
470.


